
Ludii - The Ludemic General Game System
Éric Piette, Dennis J.N.J. Soemers, Matthew Stephenson, Chiara F. Sironi,

Mark H.M. Winands and Cameron Browne
Department of Data Science and Knowledge Engineering (DKE)

Maastricht University, Bouillonstraat 8-10
Maastricht, 6211 LH, The Netherlands

{eric.piette, dennis.soemers, matthew.stephenson, c.sironi,
m.winands, cameron.browne}@maastrichtuniversity.nl

Abstract
While current General Game Playing (GGP) sys-
tems facilitate useful research in Artificial Intelli-
gence (AI) for game-playing, they are often some-
what specialized and computationally inefficient.
In this paper, we describe an initial version of a “lu-
demic” general game system called Ludii, which
has the potential to provide an efficient tool for AI
researchers as well game designers, historians, ed-
ucators and practitioners in related fields. Ludii
defines games as structures of ludemes, i.e. high-
level, easily understandable game concepts. We
establish the foundations of Ludii by outlining its
main benefits: generality, extensibility, understand-
ability and efficiency. Experimentally, Ludii out-
performs one of the most efficient Game Descrip-
tion Language (GDL) reasoners, based on a propo-
sitional network, for all available games in the Tilt-
yard GGP repository.

1 Introduction
The goal of General Game Playing (GGP) is to develop ar-
tificial agents capable of playing a wide variety of games
[Pitrat, 1968]. Several different software systems for mod-
elling games, commonly called General Game Systems, cur-
rently exist for different types of games, including: deter-
ministic perfect-information games [Genesereth et al., 2005],
combinatorial games [Browne, 2009], puzzle games [Shaker
et al., 2013], strategy games [Mahlmann et al., 2011], card
games [Font et al., 2013] and video games [Schaul, 2014].

Since 2005, the General Game System GGP-BASE1 using
the Game Description Language (GDL) [Love et al., 2008]
has become the standard for academic research in GGP.
GDL is a set of first-order logical clauses describing games
in terms of simple instructions. While it is designed for deter-
ministic games with perfect information, an extension named
“GDL-II” [Schiffel and Thielscher, 2014] has been devel-
oped for games with hidden information, and another exten-
sion named “GDL-III” [Thielscher, 2017] has been devel-
oped for epistemic games.

1GGP-BASE https://github.com/ggp-org/ggp-base

1.1 GDL Background
The generality of GDL provides a high level of algorith-
mic challenge and has led to important research contributions
[Björnsson and Schiffel, 2016], especially in Monte Carlo
tree search (MCTS) enhancements [Finnsson and Björnsson,
2008; Finnsson and Björnsson, 2010], with some original
algorithms combining constraint programming, MCTS, and
symmetry detection [Koriche et al., 2017]. Unfortunately, the
key structural aspects of games – such as the board or card
deck, and arithmetic operators – must be defined explicitly
from scratch for each game definition. GDL is also limited
in terms of potential applications outside of game AI.

Game descriptions can be time consuming to write and de-
bug, and difficult to decipher for those unfamiliar with first
order logic. The equipment and rules are typically inter-
connected to such an extent that changing any aspect of the
game would require significant code rewriting. For exam-
ple, changing the board size from 3×3 to 4×4 in the Tic-
Tac-Toe description would require many lines of code to be
added or modified. GDL game descriptions are verbose and
difficult for humans to understand, and do not encapsulate
the key game-related concepts that human designers typically
use when thinking about games. Processing such descriptions
is also computationally expensive as it requires logic reso-
lution, making the language difficult to integrate with other
external applications. Some complex games can be difficult
and time consuming to model (e.g., Go), or are rendered un-
playable due to computational costs (e.g., Chess). The main
GGP/GDL repository [Schreiber, 2016] is only extended with
a few games every year.

1.2 The Digital Ludeme Project
The Digital Ludeme Project (DLP)2 is a five-year research
project, recently launched at Maastricht University, which
aims to model the world’s traditional strategy games in a sin-
gle, playable digital database. This database will be used to
find relationships between games and their components, in
order to develop a model for the evolution of games through-
out recorded human history and to chart their spread across
cultures worldwide. This project will establish a new field of
research called Digital Archœludology [Browne, 2017].

2Digital Ludeme Project: http://ludeme.eu/

https://github.com/ggp-org/ggp-base
http://ludeme.eu/


The DLP aims to model the 1,000 most influential tra-
ditional games throughout history, each of which may have
multiple interpretations and require hundreds of variant rule
sets to be tested. This is therefore not just a mathemati-
cal/computational challenge, but also a logistical one requir-
ing a new kind of General Game System. The DLP deals with
traditional games of strategy including most board games,
card games, dice games, tile games, etc., and may involve
non-deterministic elements of chance or hidden information,
as long as strategic play is rewarded over random play; we
exclude dexterity games, physical games, video games, etc.

In this paper, we formally introduce an initial version of
Ludii,3 the first complete Ludemic General Game System
able to model and play (by a human or AI) the full range
of traditonal strategy games. We introduce the notion of
ludemes in Section 2, the ludemic approach that we have im-
plemented in Section 3, the Ludii System itself in Section 4,
its abilities to provide the necessary applications to the Digi-
tal Ludeme Project are highlighted in Section 5, and the un-
derlying efficiency of the Ludii system in terms of reasoning
is demonstrated experimentally in Section 6 by a compari-
son with one of the best GGP-BASE reasoners [Sironi and
Winands, 2017].

2 Ludemes
The decomposition of games into their component ludemes
[Parlett, 2016], i.e. conceptual units of game-related in-
formation, allows us to distinguish between a game’s form
(its rules and equipment) and its function (its emergent be-
haviour through play). This separation provides a clear
genotype/phenotype analogy that makes phylogenetic analy-
sis possible, with ludemes making up the “DNA” that defines
each game.

This ludemic model of games was successfully demon-
strated in earlier work to evolve new board games from ex-
isting ones [Browne, 2011]. An important benefit of the lu-
demic approach is that it encapsulates key game concepts, and
gives them meaningful labels. This allows for the automatic
description of game rule sets, comparisons between games,
and potentially the automated explanation of learnt strategies
in human-comprehensible terms. Recent work shows how
this model can be enhanced for greater generality and ex-
tensibility, to allow any ludeme that can be computationally
modelled to be defined using a so-called class grammar ap-
proach, which derives the game description language directly
from the class hierarchy of the underlying source code library
[Browne, 2016].

This approach provides the potential for a single AI soft-
ware tool that is able to model, play, and analyse almost any
traditional game of strategy as a structure of ludemes. It also
provides a mechanism for identifying underlying mathemati-
cal correspondences between games, to establish probabilis-
tic relationships between them, in lieu of an actual genetic
heritage.

Note that in this initial version of Ludii reported here, the
game definitions are optimised for performance (rather than
clarity, generality or extensibility). This demonstrates the

3Ludii is named after its predecessor LUDI [Browne, 2009]

flexibility of the approach that games can be implemented to
required levels of clarity, generality or performance, depend-
ing on the need.

3 Ludemic Approach
We now outline the ludemic approach used to model games.

3.1 Syntax
Definition 1. A Ludii game state s encodes which player is to
move in s (denoted by mover(s)), and five vectors each con-
taining data for every possible location; what, who, count,
state, and hidden. A more precise description of the loca-
tions and the specific data in these vector is given after Defi-
nition 3.
Definition 2. A Ludii successor function is given by

T : (S \ Ster,A) 7→ S,

where S is the set of all the Ludii game states, Ster the set
of all the terminal states, and A the set of all possible lists of
actions.

Given a current state s ∈ S \Ster, and a list of actionsA =
[ai] ∈ A, T computes a successor state s′ ∈ S. Intuitively,
a complete list of actions A can be understood as a single
“move” selected by a player, which may have multiple effects
on a game state (each implemented by a different primitive
action).
Definition 3. A Ludii game is given by a 3-tuple of ludemes
G = 〈Mode,Equipment,Rules〉 where:
• Mode = {p0, p1, . . . , pk} is a finite set of k+1 players,

where k ≥ 1. Random game elements (such as rolling
dice, flipping a coin, dealing cards, etc.) are provided
by p0, which denotes nature. The first player to move in
any game is p1, and the current player is referred to as
the mover.
• Equipment = 〈Ct, Cp〉 where:

– Ct denotes a list of containers (boards, player’s
hands, etc.). Every container ct = 〈V,E〉, where
ct ∈ Ct, is a graph with vertices V and edges E.
Every vertex vi ∈ V corresponds to a playable site
(e.g. a square in Chess, or an intersection in Go),
while each edge ei ∈ E represents that two sites
are adjacent.

– Cp denotes a list of components (pieces, cards,
tiles, dice, etc.), some of which may be placed on
sites of the containers in Ct. We use the conven-
tion that the component cp0 ∈ Cp is placed on all
“empty” sites.

• Rules defines the operations of the game, including:

– Start = [a0, a1, . . . , ak] denotes a list of starting
actions. The starting actions are sequentially ap-
plied to an “empty” state (state with c0 on all sites
of all containers) to model the initial state s0.

– Play : S 7→ P(A), where P(A) denotes the pow-
erset of the set A of all possible lists of legal ac-
tions. This is a function that, given a state s ∈ S,
returns a set of lists of actions.



– End = (Cond0(s), ~S0) ∪ . . . ∪ (Conde(s), ~Se)
denotes a set of conditionsCondi(s) under which a
given state s is considered to be terminal. Each ter-
mination condition Condi(s) leads to a score vec-
tor ~Si.

Ludii provides some predefined vectors: Win, Loss,
Draw, Tie, and Abort. Moreover, if the mover has no le-
gal moves then they are in a (temporary) Stalemate and must
perform the special action pass, unless the End rules dictate
otherwise. States in which all players were forced to pass
for the last complete round of play are abandoned as a Draw.

We specify locations loc = 〈c, vi, li〉 by their container
c = 〈V,E〉, a vertex vi ∈ V , and a level li ≥ 0. Every
location specifies a specific site in a specific container at a
specific level, where most games only use li = 0 but stack-
ing games may use more levels. For every such location, a
game state s encodes multiple pieces of data, as described
in Definition 1. The index of a component located at loc
in s is given by what(s, loc), the owner (player index) by
who(s, loc), the number of components by count(s, loc), the
internal state of a component (direction, side, promotion sta-
tus, etc.) by state(s, loc). If the state of a location loc is
hidden information for a certain player pi, that is given by
hidden(s, loc, pi).

3.2 Ludii Example
Following Definition 3, Ludii provides a variety of ludemes
corresponding to simple operations that can be used to define
players, equipment or rules. For example, (line 3) is a
Boolean ludeme that returns True if there is a line of three
pieces in a container, and (empty) is a ludeme that returns
a list containing all empty sites of a container.

In Figure 1, a complete description of the game Tic-Tac-
Toe is given according to the EBNF-style grammar gener-
ated by Ludii. The mode ludeme describes the mode of
play; a game with alternating turns played between two play-
ers, named P1 and P2. The first subset of the equipment
ludeme describes the main board as a square 3×3 tiling, with
the second subset listing the components as a disc piece type
named “O” for player 1 and a cross piece type named “X” for
player 2. Each turn, the mover plays a piece of their colour
at any empty cell, which is implemented by (to Mover
(empty)). The winning condition for the mover is to create
a line of three pieces. Tic-Tac-Toe does not require any Start
rules.

(game "Tic-Tac-Toe"
(mode {(player "P1")(player "P2")})
(equipment
{(board "Board" (square 3))}
{(disc "O" 1) (cross "X" 2))}

)
(rules

(play (to Mover (empty)))
(end (line 3)(result Mover win))

)
)

Figure 1: The game of Tic-Tac-Toe modelled in Ludii.

If the board fills before either player wins, then game de-
faults to a Draw after both players are forced to pass. Note
that judicious use of default settings for common game be-
haviours allows succinct game descriptions.

4 Ludii System
The next section introduces the Ludii system itself, describing
both the grammar approach and the core of the system.

4.1 Class Grammar
Ludii is a complete general game system [Browne et al.,
2014] that uses a class grammar approach, in which the
game description language is automatically generated from
the constructors in the class hierarchy of the Ludii source
code [Browne, 2016]. Game descriptions expressed in the
grammar are automatically instantiated back into the corre-
sponding library code for compilation, giving a guaranteed
1:1 mapping between the source code and the grammar.

Schaul et al. [2011] points out that “any programming lan-
guage constitutes a game description language, as would a
universal Turing machine”. Ludii effectively makes its pro-
gramming language (Java) the game description language. It
can theoretically support any rule, equipment or behaviour
that can be programmed in Java. The implementation details
are hidden from the user, who only sees the simplified gram-
mar which summarises the code to be called.

4.2 The Core of Ludii
The core of Ludii is a ludeme library implemented in Java 8,
consisting of a number of classes, each implementing a spe-
cific ludeme. A Ludii game G defining all relevant ludemes
(players, equipment, rules) is stored as a single immutable
Game object. In the context of General Game Playing, dis-
playing any game automatically is important for understand-
ing strategies by AI players. To this end, all equipment in
Ludii implements the Drawable interface, which means
that each item of equipment is able to draw a default bitmap
image for itself at a given resolution, for displaying the board
state. Containers Ct are able to draw their current compo-
nents at the appropriate positions, orientations, states, etc. A
View object provides the mechanism for showing the current
game state on the screen and a Controller object provides
the mechanism for updating the game state based on user in-
put such as mouse clicks. All games available in the system
can be played by both humans and/or AI.

As an example, Figure 2 shows a 2-player game G with
Ct = {ct0}, where ct0 is a hexagonal container with hexagonal
tiles. Cp = {cp0, c

p
1, c

p
2}, where cp0 is the empty component,

cp1 is the white disc for the player p1, and cp2 the black disc
for player p2. The system has a graph representation of the
board for visualisation, the vertices, edges, and faces of this
graph are depicted in blue. The dual of this graph, which is
the graph given by ct0, is depicted in grey.

The game graph itself can be modified during certain graph
games (e.g. Dots & Boxes) in which a player’s moves in-
volve operations on the graph (e.g. adding or cutting edges
or vertices). Reasoning efficiency can be optimized by pre-
generating data such as corners of the board, exterior ver-
tices, vertices along the top side of the board, etc. within



Figure 2: A hex board container with hexagonal tiling and the dual
of its graph (which is itself a graph).

the Graph class, and vertex neighbours indexed by direc-
tion, vertices reached by turtle steps, etc. within the Vertex
class.

The data vectors what, who, etc. of a state s are imple-
mented in a collection of ContainerState objects. Dif-
ferent representations are implemented in order to minimise
the memory footprint and to optimise the time needed to ac-
cess necessary data for reasoning on any game:

• Uniform pieces per player (e.g. Tic-Tac-Toe).
• Distinguished pieces per player (e.g. Chess).
• Piece state or direction per site (e.g. Reversi, Ploy).
• Piece count per site (e.g. Mancala).
• Piece stacking (e.g. Laska).
• No fixed board (e.g. Dominoes).
• Hidden information (e.g. Stratego, card games).

Ludii automatically selects the appropriate state type from
the rules before creating the Game object, to ensure the most
suitable representation is used.

Container states are defined using a custom BitSet class,
called ChunkSet, that compresses the required state in-
formation into a minimal memory footprint, based on each
game’s definition. For example, if a game involves no more
equipment than a board and uniform pieces inN colours, then
the game state is described by a ChunkSet subdivided into
chunks of B bits per board cell, where B is the lowest power
of 2 that provides enough bits to represent every possible state
per cell (including state 0 for the empty cells).4

Using the game state and the different ludemes describ-
ing the game rules, the system can compute the legal moves
for any state. The tree of ludemes is evaluated to return the
list of Action objects applicable for the mover. Each Ac-
tion object describes one or more atomic actions to be ap-
plied to the game state to execute a move. Actions typically
include adding or removing components to/from containers,
or changing component counts or states within containers.
Definition 4. A trial τ is a sequence of states si and action
lists Ai:

〈s0, A1, s1, . . . , sf−1, Af , sf 〉
4Chunk sizes are set to the lowest power of 2 to avoid issues with

chunks straddling consecutive long values.

such that f ≥ 0, and for all i ∈ {1, . . . f},
• the played action list Ai is legal for the mover(si−1)
• states are updated: si = T (si−1, Ai)

• only sf may be terminal: {s0, . . . , sf−1} ∩ Ster = ∅
τ is stored in a Trial object, providing a complete record

of a game played from start to end, including the moves made.
Any reasoning on any game can be parallelised using sep-

arate trials per thread. All the data members of the Game ob-
ject are constant and can therefore be shared between threads.
A thread will be able to use a Trial object to compute any
playouts from any state. On the system each AI object de-
scribes the AI implementation chosen for each player, includ-
ing computational budget/time limits, hints such as features
for biasing playouts [Browne et al., 2019], etc.

5 Benefits and Key Properties
Ludii is being designed and implemented primarily to pro-
vide answers to the questions raised by the DLP, but will
stand alone as a platform for general games research in areas
including AI, design, history and education. Ludii provides
many advantages over existing GGP systems, as follows:
Simplicity: Simplicity refers to the ease with which game
descriptions can be created and modified, and can be esti-
mated by the number of tokens required to define games. De-
scribing a game with the ludemic approach is typically much
simpler compared to a logic-based approach (e.g. LUDII re-
quires only 29 tokens for Tic-Tac-Toe and 298 for Chess,
whereas GDL requires 381 and 4, 932 tokens respectively)
ludemic game descriptions can also be easily modified to test
different sizes, geometries or rules. For example, chang-
ing the size or shape of a board (e.g. Figure 3) can be ac-
complished by modifying a single parameter, while the same
change in GDL requires many lines of code to be added or
modified.
Clarity: Clarity refers to the degree to which game descrip-
tions would be self-explanatory to non-specialist readers. The
logic-based game descriptions of GDL are often difficult for
humans to interpret. In Ludii, the Java classes that define
each ludeme are named using meaningful English labels, pro-
viding convenient definitions for the concepts involved. This

(board "Board" (square 8)) (board "Board" (rhombus 8))

Figure 3: The game of Breakthrough on a square (left) and rhombus
(right) board shapes.



becomes especially useful for games in which more complex
mathematical concepts (geometry, algebra, arithmetic, etc.)
are encapsulated within their component ludemes.

Generality: Generality refers to the scope of games cov-
ered by the system without the need for extensions. As Ludii
uses the class grammar approach to describe the ludemes, it
can theoretically support any game that can be programmed
in Java, The initial version of Ludii described in this paper al-
ready includes many different game types beyond those that
can be implemented in GDL The final version of Ludii will be
even more general and facilitate many additional game types.

Extensibility. Extensibility refers to the ease with which
new functionality can be added to the system. The initial
version of Ludii currently provides 68 different games (and
179 variants) using 259 different ludemes, which test the sys-
tem’s various options and capabilities. Extending Ludii sim-
ply involves adding new classes to the ludeme library, which
are then automatically subsumed into the grammar, making
extensibility very open-ended. Extending GDL involves sig-
nificant modifications to the core model and program.

Efficiency: Since the Ludii programmer has complete con-
trol of the underlying code – within the constraints of the
API and programming guidelines – it is possible to optimise
ludemes at any desired level. There is of course a trade-off
between game optimisation and description detail. The more
optimised a game is, the shorter its description tends to be and
the less detail we know about it. This has profound implica-
tions for the DLP, in which the ability to reliably compare
games for similarity is a key requirement, hence we distin-
guish between descriptive and optimised versions of games.

Evolvability: This refers to the likelihood that randomly
evolving game descriptions will produce viable children that
resemble their parents. GDL game descriptions tend to
involve complex chains of logical operations that must be
crafted with great care. Randomly applying crossovers and
mutations between GDL descriptions is extremely unlikely
to produce correct (i.e. playable) results, let alone improve
on the parents. Conversely, the ludemic approach is ide-
ally suited to evolutionary approaches such as genetic pro-
gramming [Koza, 1992] and has already proven successful in
evolving new high quality games [Browne, 2009].

Cultural Application: Aside from its GGP benefits, Ludii
also has several applications as a tool for the new domain of
Digital Archœludology [Browne, 2017]. The Ludii system
will eventually be linked to a server and database that stores
relevant cultural and historical information about the games.
This information will not only provide additional real-world
context, but will allow us to reconstruct viable and histori-
cally authentic rule-sets for games with incomplete informa-
tion, develop a “family tree” of traditional games, and help
map the spread of games throughout history.

Universality: While Ludii supports a wide range of games,
including nondeterministic and hidden information games,
we cannot prove the universality of its full grammar within
the scope of this paper. We instead show that Ludii is univer-
sal for finite deterministic perfect information games:

Theorem 1. Ludii is universal for the class of finite deter-
ministic games with perfect information.

In Ludii, this class of games does not require the nature
player p0, and hidden(s, loc, pi) returns false for any state s,
any location loc, and any player pi. The proof5 is structured in
a similar way to a proof of universality for GDL and GDL-
II [Thielscher, 2011]. Based on the definition of extensive-
form games [Rasmusen, 2007], we formalise deterministic
games and prove that Ludii can define an arbitrary finite game
tree. Consequently, all games that can possibly be modelled
in GDL can be also described in Ludii.

6 Experiments
The Ludii System – as with most other GGP systems – uses
MCTS as its core method for AI move planning, which
has proven to be a superior approach for general games in
the absence of domain specific knowledge [Finnsson and
Björnsson, 2010]. MCTS playouts require fast reasoning en-
gines to achieve the desired number of simulations. Hence,
we use flat Monte Carlo playouts (i.e., trials τ where sf ∈
Ster) as the metric for comparing the efficiency of Ludii to
other GGP systems.

6.1 Experimental Design
In the following comparison, we compare GGP-BASE and
Ludii based on the number of playouts obtained per sec-
ond. For GGP-BASE, we used the fastest available game
implementation6 and tested one of the most efficient GGP-
BASE reasoners based on propositional networks or “prop-
nets” [Sironi and Winands, 2017]. Propnets speed up the
reasoning process with respect to custom made or Prolog-
based reasoners by translating the GDL rules into a directed
graph that resembles a logic circuit, whose nodes correspond
to either logic gates or GDL propositions that represent the
state, players’ moves and other aspects of the game. Infor-
mation about the current state can be computed by setting the
truth value of the propositions that correspond to the state and
propagating these values through the graph. Setting and prop-
agating the truth values of the propositions that correspond to
the players’ actions allows us to compute the next state.

All experiments were conducted on a single core of an In-
tel(R) XEON(R) CPU E5-2680 v2 at 2.80 GHz with 2GB
RAM, spending 10 minutes per test.

6.2 Results
The results of our experiments for a selection of games avail-
able in GDL, are shown in Table 1. The top section of the
table is dedicated to single player games and the bottom sec-
tion for multiplayer games. The rightmost column shows the
speedup factor which Ludii achieves over GGP-BASE.

Table 2 highlights our results for a selection of games, in-
cluding several historical games, that have no GDL equiva-
lent. The fact that no existing GGP system or game descrip-
tion language supported the full range of games required for
the DLP was a driving motivation in developing Ludii.

5The complete proof is in the appendix
6Taken from [Schreiber, 2016]



Game Ludii GDL Rate

Single player games
8 Puzzle 26,958 4,113 6.55
8 Queens 963,443 1,946 495.10
16 Queens 785,973 522 575.85
Futoshiki (4×4) 294,772 23,797 12.39
Futoshiki (5×5) 273,348 11,494 23.78
Futoshiki (6×6) 182,245 5,838 31.56
Knight’s Tour (8×8) 91,156 75,000 1.21
Lights Out (5×5) 32,889 11,799 2.79
Nonogram (5×5) 279,242 59,044 4.73
Nonogram (10×10) 45,817 6,883 6.65
Peg Solitaire 7,713 3,172 2.43
Sudoku 88,565 635 139.47
Towers of Hanoi 3 264,345 35,847 7.37

Multi-player games
Amazons (10×10) 2,933 185 15.85
Breakthrough (6×6) 19,022 3,923 4.85
Breakthrough (8×8) 6,632 1,123 5.91
Chess 1,075 0.06 17,916.67
Connect 4 (6×7) 124,349 13,664 9.10
Connect 4 (12×9) 99,697 9,856 10.12
English Draughts 1,914 872 2.19
Gomoku (15×15) 2,514 927 2.71
Hex (9×9) 21,244 195 108.94
Knightthrough (8×8) 5,085 1,869 2.72
Reversi (8×8) 2,085 203 10.27
Skirmish (8×8) 2,278 124 18.37
Tic-Tac-Toe (3×3) 641,445 85,319 7.52
Tic-Tac-Toe (5×5) 197,972 11,453 17.29
Tron (10×10) 494,999 121,989 4.06
Wolf and Sheep (8×8) 22,305 5,532 4.03

Table 1: The average number of playouts per second for games avail-
able on the Tiltyard GGP server.

Game Ludii Game Ludii

Alquerque 796 Mu-Torere 7,719
Ashtapada 12,755 Nine men’s morris 5,121
Connect 6 (19×19) 21,873 Oware 3,275
Dara 5,408 Ploy 819
Fanorona 1,906 Tant Fant 51,549
Hnefatafl (11×11) 326 Three men’s morris 100,174
MineSweeper (8×8) 68,233 Yavalath 189,335

Table 2: The average number of playouts per second for games un-
available in GDL.

6.3 Discussion
Ludii outperforms GGP-BASE in terms of efficiency for
all games tested. The performance improvement for single
player games (e.g. solitaire puzzles) increased with the size
of the puzzle (e.g. Futoshiki from 12.39 to 31.56). For some
puzzles with optimised GDL descriptions (e.g. Knight’s
Tour) Ludii achieves similar performances, but for others
(e.g. N Queens or Sudoku) Ludii achieves significant im-
provements from 100 to almost 600 times faster.

Ludii is at least 2 times faster for all multi-player games
tested. For simpler games, board size is highly correlated

with speed improvement; Ludii is almost 7 times faster for
the standard 3×3 Tic-Tac-Toe but almost 17 times faster for
the larger 5×5 game. For more complex games – such as
Amazons and Skirmish (a variant of Chess where each player
has to capture all the enemies pieces) – Ludii is once again
more efficient than GDL (over 15 times faster in these cases).

The greatest speed disparity is for Chess, with an improve-
ment rate of almost 18, 000. The GDL description of Chess
cannot be translated to a propnet because its size exceeds the
available memory, therefore we had to use the GDL Prover
implementation in the GGP-BASE for comparison. The
GGP-BASE Prover is generally slower for more complex
games with respect to the propnet, explaining the low number
of playouts for Chess (0.06).

The DLP requires the ability to model a broad range of
traditional strategy games. In Table 2, Ludii demonstrates its
capacity for reasoning in a variety of different games: race
games (e.g. Ashtapada), imperfect-information games (e.g.
card games), Mancala games (e.g. Oware) games with large
boards (e.g. Connect 6), etc. However, for Hnefatafl, the
most famous Tafl game, the current version of Ludii obtains
a low number of playouts per second. This is likely because
Hnefatal playouts can be lengthy – often over 1,000 moves
per game – as the winning condition for each player is un-
likely to be reached through strictly random play. Work is in
progress to address this for the imminent release version of
Ludii.

Kowalski et al. [2019] recently proposed the Regular
BoardGames (RBG) language, based on regular languages,
which provides better expressiveness, efficiency, and clarity
than GDL. Initial investigations into this language reveal it
to be concise but limited to deterministic board games whose
geometry can be described in plain ASCII format. It also ap-
pears to be less efficient than Ludii’s class grammar approach;
e.g. Hex 9×9 achieves 3, 425 playouts/second in RBG but
21, 244 in Ludii. Future work will include a deeper compari-
son between the Ludii and RBG approaches.

7 Conclusion
The proposed ludemic General Game System Ludii outper-
forms GGP-BASE– the current standard for academic AI re-
search into GGP – in terms of reasoning efficiency. It also has
advantages in terms of simplicity, clarity, generality, extensi-
bility and evolvability, and has been designed to be applicable
to other research fields in addition to game AI.

The potential benefits of this new GGP approach presents
several opportunities for future AI work. For example, fea-
tures discovered by reinforcement learning could be auto-
matically visualised for any game to possibly reveal use-
ful strategies relevant to that game, or provided as human-
understandable descriptions based on ludemes with meaning-
ful plain English labels. Another work in progress includes
improving AI playing strength by biasing MCTS with fea-
tures automatically learnt through self-play.

We will continue refining this initial experimental version
of Ludii into a stable release version, with improvements in
several aspects including further efficiency, for its imminent
public release.



Acknowledgements
This research is part of the European Research Council-
funded Digital Ludeme Project (ERC Consolidator Grant
#771292) being run by Cameron Browne. This work is par-
tially supported by The Netherlands Organisation for Scien-
tific Research (NWO) in the framework of the GoGeneral
Project (Grant No. 612.001.121)

References
[Björnsson and Schiffel, 2016] Yngvi Björnsson and

Stephan Schiffel. General game playing. In Handbook
of Digital Games and Entertainment Technologies, pages
1–23, Singapore, 2016. Springer Singapore.

[Browne et al., 2014] Cameron Browne, Julian Togelius,
and Nathan Sturtevant. Guest editorial: General games.
IEEE Transactions on Computational Intelligence and AI
in Games, 6(4):317–319, Dec 2014.

[Browne et al., 2019] Cameron Browne, Dennis J.N.J. Soe-
mers, and Eric Piette. Strategic features for general games.
In Proceedings of the 2nd Workshop on Knowledge Ex-
traction from Games co-located with 33rd AAAI Confer-
ence on Artificial Intelligence June 27, 2019, Honolulu,
Hawaii, USA., pages 70–75, 2019.

[Browne, 2009] Cameron B. Browne. Automatic genera-
tion and evaluation of recombination games. PhD thesis,
Queensland University of Technology, 2009.

[Browne, 2011] Cameron B. Browne, editor. Evolutionary
Game Design. Springer, 2011.

[Browne, 2016] Cameron B. Browne. A class grammar for
general games. In Advances in Computer Games, volume
10068 of LNCS, pages 167–182, Leiden, 2016.

[Browne, 2017] Cameron B. Browne. Back to the past: An-
cient games as a new AI frontier. In AAAI 2017, San Fran-
cisco, 2017.

[Finnsson and Björnsson, 2008] Hilmar Finnsson and Yngvi
Björnsson. Simulation-based approach to general game
playing. In The Twenty-Third AAAI Conference on Artifi-
cial Intelligence, pages 259–264. AAAI Press, 2008.

[Finnsson and Björnsson, 2010] Hilmar Finnsson and Yngvi
Björnsson. Learning simulation control in general game-
playing agents. In The Twenty-Fourth AAAI Conference on
Artificial Intelligence, pages 954–959. AAAI Press, 2010.

[Font et al., 2013] Jose M. Font, Tobias Mahlmann, Daniel
Manrique, and Julian Togelius. A card game description
language. In Applications of Evolutionary Computation
- 16th European Conference, EvoApplications 2013, Pro-
ceedings, volume 7835 LNCS of Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics),
pages 254–263, 2013.

[Genesereth et al., 2005] Michael R. Genesereth, Nathaniel
Love, and Barney Pell. General game playing: Overview
of the AAAI competition. AI Magazine, 26(2):62–72,
2005.

[Koriche et al., 2017] Frédéric Koriche, Sylvain Lagrue,
Éric Piette, and Sébastien Tabary. Constraint-based sym-
metry detection in general game playing. In Proceedings
of the Twenty-Sixth International Joint Conference on Ar-
tificial Intelligence, IJCAI-17, pages 280–287, 2017.

[Kowalski et al., 2019] Jakub Kowalski, Mika Maksymil-
ian, Jakub Sutowicz, and Marek Szykula. Regular
boardgames. In The Thirty-Third AAAI Conference on Ar-
tificial Intelligence. AAAI Press, 2019.

[Koza, 1992] John Koza. Genetic Programming. MIT Press,
Massachusetts, 1992.

[Love et al., 2008] Nathaniel Love, Timothy Hinrichs,
David Haley, Eric Schkufza, and Michael Genesereth.
General game playing: Game description language
specification, 2008.

[Mahlmann et al., 2011] Tobias Mahlmann, Julian Togelius,
and Georgios N. Yannakakis. Modelling and evaluation
of complex scenarios with the strategy game description
language. In 2011 IEEE Conference on Computational
Intelligence and Games (CIG), pages 174–181, 2011.

[Parlett, 2016] David Parlett. What’s a ludeme? In Game
Puzzle Design, volume vol. 2, pages 83–86, 2016.

[Pitrat, 1968] Jacques Pitrat. Realization of a general game-
playing program. In IFIP Congress (2), pages 1570–1574,
1968.

[Rasmusen, 2007] Eric Rasmusen. Games and Information:
An Introduction to Game Theory, 4th ed. B. Blackwell,
2007.

[Schaul et al., 2011] Tom Schaul, Julian Togelius, and
Jürgen Schmidhuber. Measuring intelligence through
games. CoRR, abs/1109.1314, 2011.

[Schaul, 2014] Tom Schaul. An extensible description lan-
guage for video games. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 6(4):325–331, Dec
2014.

[Schiffel and Thielscher, 2014] Stephan Schiffel and
Michael Thielscher. Representing and reasoning about
the rules of general games with imperfect information.
Journal of Artificial Intelligence Research, 49:171–206,
2014.

[Schreiber, 2016] Sam Schreiber. Games-base repository.
http://games.ggp.org/base/, 2016.

[Shaker et al., 2013] Mohammad Shaker, Mhd Hasan
Sarhan, Ola Al Naameh, Noor Shaker, and Julian Togelius.
Automatic generation and analysis of physics-based puz-
zle games. 2013 IEEE Conference on Computational
Inteligence in Games (CIG), pages 241–248, 2013.

[Sironi and Winands, 2017] Chiara F. Sironi and Mark H.M.
Winands. Optimizing propositional networks. In Com-
puter Games. Springer., pages 133–151, 2017.

[Thielscher, 2011] Michael Thielscher. The general game
playing description language is universal. In Proceedings
of the Twenty-second International Joint Conference on
Artificial Intelligence, IJCAI-11, pages 1107–1112, 2011.

http://games.ggp.org/base/


[Thielscher, 2017] Michael Thielscher. GDL-III: A descrip-
tion language for epistemic general game playing. In
Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, pages 1276–
1282, 2017.

A Proof for Theorem 1
Similar to Kowalski et al. [2019], we formalise a finite, de-
terministic, k-player game with perfect information as a tuple
(k, T, ι, υ), where:
• k ∈ N indicates the number of players.
• T is a finite tree with:

– Nodes S (also referred to as game states).
– An initial state s0 ∈ S (the root node of T ).
– Terminal states Ster ⊆ S (leaf nodes of T ).
– A predecessor function f : (S \ {s0}) 7→ S, such

that f(s) denotes the parent of s in T .
• ι : (S \ Ster) 7→ {0, . . . , k} indicating which player has

the control in a given state.
• υ : Ster 7→ Rk, such that υ(s) denotes the vector of

payoffs for k players for any terminal state s ∈ Ster.
This is equivalent to the formalisation of k-player extensive
form games by Rasmusen [2007], excluding elements re-
quired only for non-determinism or imperfect information.

We prove that, given any arbitrary finite, deterministic
game with perfect information as defined above, a Ludii game
can be constructed such that there is a one-to-one mapping
between states and state transitions between the original game
and the Ludii game. The intuition of our proof is to construct
a Ludii game where the game board is represented by a graph
with an identical structure to the full game tree T . The Ludii
game is played by moving a single token, placed on the “root
node” in the initial game state, along the graph until a leaf
node is reached. For any state z in the original game, there is
a corresponding state s in the Ludii game such that the token
is located on the vertex corresponding to the position of z in
T . Note that explicitly enumerating the complete game tree
as a graph is unlikely to be the most optimal representation
for most games, but it demonstrates that Ludii is capable of
representing all such games.
Definition 5. Let D = (k, T, ι, υ) denote a finite, de-
terministic, k-player game with perfect information as
formalised above. We define a related Ludii game
G(D) = 〈Mode,Equipment,Rules〉, where Rules =
〈Start, P lay,End〉, such that:
• Mode = {p0, p1, . . . , pk}, where all pi for i ≥ 1 cor-

respond to the k different players. The nature player p0
will remain unused in deterministic games.
• Equipment = 〈{ct0}, {c

p
0, c

p
1}〉. The only container

ct0 = 〈V,E〉 is a graph with a structure identical to the
tree T of the original game D. Due to the structure of
ct0 being identical to the structure of T , we can uniquely
identify a vertex v(z) for any state z ∈ T from the orig-
inal game. For any such vertex – except for v(s0) – we
can also uniquely identify an adjacent “parent” vertex

p(v(z)), such that p(v(z)) = v(f(z)); the parent of a
vertex corresponds to the predecessor of the correspond-
ing state in the original tree T .
• The Start rules are given by a list containing only a sin-

gle action. This action creates the initial game state by
placing the cp1 token on the site v(s0) of ct0 that corre-
sponds to the root node of T .
• Let s denote any non-terminal Ludii game state,

such that there is exactly one site v(z) for which
what(s, 〈ct0, v(z), 0〉) = cp1. Let z denote the state in
the original game that corresponds to the site v(z). Let
g(z) denote the children of z in T . Given s, we de-
fine Play(s) to return a set {Ai} of lists of actions Ai,
with one list of actions for every child node z′ ∈ g(z).
Each of those lists contains two primitive actions; one
that takes the token cp1 away from v(z) (replacing it with
the “empty” token cp0), and a second action that places a
new token cp1 on the site v(z′) of ct0 that corresponds to
the child z′ ∈ T .
• The end rules are given by End = {(Condi(·), ~Si)}.

For any terminal game state zi ∈ Ster, let v(zi) denote
the site in the graph ct0 that corresponds to the position of
zi in T . We add a tuple (Condi(·), ~Si) to End such that
Condi(s) returns true if and only if what(s, loc) = cp1
for loc = 〈ct0, v, 0〉, and ~Si = υ(zi). Intuitively, we
use a separate end condition for every possible terminal
state zi ∈ Ster in the original game D, which checks
specifically for that state by making sure the cp1 token is
placed on the matching vertex v(zi).
• Let s denote any non-terminal Ludii game state,

such that there is exactly one site v(z) for which
what(s, 〈ct0, v(z), 0〉) = cp1. Let z denote the state in the
original game that corresponds to the site v(z). Then, we
define mover(s) = ι(z).

Lemma 1. Let G(D) denote a Ludii game constructed as in
Definition 5. Every game state s that can be reached through
legal gameplay in such a game has exactly one vertex v ∈ ct0
such that what(s, 〈ct0, v, 0〉) = cp1, and what(s, 〈ct0, u, 0〉) =
cp0 for all other vertices u 6= v.

Intuitively, this lemma states that every game state reach-
able through legal gameplay has the cp1 token located on ex-
actly one vertex, and that all other vertices are always empty
(indicated by cp0).

Proof. Let s0 denote the initial game state. The Start rules
are defined to place a single cp1 token on v(z0), where z0 de-
notes the initial state in the D game, which means that the
lemma holds for s0.

Let s denote any non-terminal game state for which the
lemma holds. Then, the assumptions in Definition 5 for an ad-
equate definition of Play(s) are satisfied, which means that
{Ai} = Play(s) is a non-empty set of lists of actions, one
of which must be selected by mover(s). Every Ai is defined
to take away the token cp1 from the vertex it is currently at,
and to place it on exactly one new vertex. This means that
the lemma also holds for any successor state T (s,Ai), which
proves the lemma by induction.



We are now ready to prove the main theorem from the pa-
per:
Theorem 2. Ludii is universal for the class of finite deter-
ministic games with perfect information.

Proof. Let D denote any arbitrary game as formalised above,
with a tree T . Let G(D) denote a Ludii game constructed
as described in Definition 5. We demonstrate that for any
arbitrary traversal through T , from s0 to some terminal state
zter ∈ Ster, there exists an equivalent trial τ , as defined in
Definition 4, in G(D). By “equivalent” trial, we mean that
the sequence of states traversed is equally long, the order in
which players are in control is equal, and the payoff vectors
at the end are equal.

Let z0, z1, . . . , zf denote any arbitrary line of play in the
original game D, such that z0 is the initial game state, and
zf ∈ Ster. By construction, the initial game state s0 of G(D)
has the token cp1 placed on the vertex v(z0) corresponding to
the root node of T . This means that we have a one-to-one
mapping from z0 to s0, where what(s0, 〈ct0, v(z0), 0〉) = cp1.

Let zi denote some non-terminal state in the sequence
z0, z1, . . . , zf−1, such that we already have uniquely mapped
zi to a Ludii state si where what(si, 〈ct0, v(zi), 0〉) = cp1.
Lemma 1 guarantees that the assumptions required for Defi-
nition 5 to adequately define Play(si) are satisfied. Further-
more, we know that ι(zi) = mover(si), which means that
the same player is in control. The definition of Play(si) en-
sures that there is exactly one legal list of actionsAi such that
T (si, Ai) = si+1, where what(si+1, 〈ct0, v(zi+1), 0〉) = cp1
(note that zi+1 must be a successor of zi in T ). We pick this
si+1 to uniquely map to zi+1.

By induction, this completes the unique mapping be-
tween sequences of states z0, z1, . . . , zf and s0, s1, . . . , sf ,
uniquely specifies the lists of actions Ai that must be selected
along the way, and ensures that zi is always mapped to a state
si such that the cp1 token is placed on v(zi). This last observa-
tion ensures that one of the End conditions in G(D) triggers
for sf , and that the correct payoff vector ~S = υ(zf ) is se-
lected.


	Introduction
	GDL Background
	The Digital Ludeme Project

	Ludemes
	Ludemic Approach
	Syntax
	Ludii Example

	Ludii System
	Class Grammar
	The Core of Ludii

	Benefits and Key Properties
	Experiments
	Experimental Design
	Results
	Discussion

	Conclusion
	Proof for Theorem 1

